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Abstract

Many traditional music pieces are taught and passed down by hand and do not have
written descriptions such as sheet music. Irish flute music is one such example
and would potentially be lost in the near future if there are no actions being made
on transcription. Manually transcribing music pieces is inefficient and inaccurate
at times, thus motivating research into using novel machine-learning models to
automate the process. Limited research has been conducted in this field and
this project aims to contribute to this effort so that they can be prolonged for
future generations to study and enjoy. The project has focused on implementing
traditional methods as well as using deep learning models (CNN) to conduct onset
detection and musical segment type classification which are both crucial factors in
automatically transcribing a piece of audio music.

1 Introduction

Transcribing music into music notations represents the uniqueness and advance of human intelligence.
This process requires humans to perceive, recognize, acknowledge and infer the music pieces. The
goal of an automatic musical transcription (AMT) model is to convert acoustic signals into high-
level information, making signals more accessible and comprehensive. Normally, the high-level
information is in the format of piano-roll representations[5], or score formats[4][18]. The AMT task
is challenging in the fields of both signal processing and artificial intelligence. It includes subtasks
such as multi-pitch estimation, onset and offset detection, instrument recognition, beat and rhythm
tracking, interpretation of expressive things and dynamics, and score typesetting. In this report, we
implemented an AMT system with the function of onset and segment type identification.

For our current automatic transcription music model with a focus on traditional Irish flute music, we
adopted both traditional and deep learning-based methods. Our goal is to detect onsets for each note



of the annotated flute music, and the type of segment they belong to. In section 4, we discussed the
implementation of the spectral-flux method which performs onset detection in the spectral domain[15].
We also implemented Convolutional Neural Networks (CNNs) and treated both detection problems as
computer vision tasks. The architecture of the base model is inspired by J.Schluter and S.Bock[19].
The dataset is a collection of traditional Irish flute music recordings which are embedded with
characteristics of traditional Irish music, such as Irish tunes and ornamentation[14]. We explored
the performance of conventional detection methods (spectral-flux method), base CNN models, and
transfer learning to enhance the model’s capabilities. We calculated the accuracy for the conventional
approach and evaluated popular metrics for the deep learning methods (e.g. precision, recall, f1-score,
and so on). Using transfer learning improved the baseline CNN model to an AUROC score of 0.838
while the newly implemented music segment prediction model achieved an F1-score of 0.70.

2 Literature Review

2.1 Types of automatic transcription models

Based on different types of model inputs, we classified the automatic music transcription(AMT)
model into two categories. If the input to the model is a frame-level spectrogram, and each frame
matches with one output, then the AMT model is considered as frame-based model. If the model
takes a segment of or the whole spectrogram as the input, and each segment matches with multiple
notes, then the AMT model is considered as note-based model[6]. Compared with the note-based
model, the frame-based model is less complicated as it hasn’t considered the relations between each
frame. However, some musical work is the aggregation of long-term structures. To consider the
integrity of musical transcriptions, several models based on a hidden Markov model (HMM) [10] and
a recurrent neural network (RNN) [12][6] were proposed recently. We applied the frame-level model
to our onset detection problem as we wanted to explore how onsets are represented in the frequency
spectrum and use the advantages of CNNs to perceive edges in a picture.

2.2 Irish Traditional Music

Irish traditional music is a creative and lively musical form. Tunes, as the basic structure of Irish
music, are usually uncomplicated and common. Ornamentation is the critical feature determining the
style of Irish traditional music, expressed through improvisation in various musicians’ performances.
However, even though there are few previous research targeting at Irish traditional music styles, orna-
ments are normally ignored and insufficiently recorded[11][3]. To answer the questions concerning
the differences in individualistic and regional styles in Irish traditional music, a variety of recordings
containing diverse performances by musicians should be collected, analyzed, and compared. This
goal inspired the birth of this manually annotated dataset and also encouraged us to build an automatic
music model specialized for Irish traditional music.

Tunes and Ornaments The term "tune" is regarded as a melody that is usually composed of parts
that may be repeated several times. The tunes normally include two segments and tunes with more
than two segments are not common[14]. Ornaments can be seen as the embellishments of the melodic
lines in Irish traditional music[17]. Performers can use the particular fingered expression to create
ornaments on the flute. However, the ornaments are usually not marked in the script[16], and the
option of using ornaments is improvised. Single-note and multi-note ornaments are two common
forms of ornaments.

Mannual Annotation The traditional Irish music data set is annotated by Köküer, M., Ali-
MacLachlan, et al.[14] using a software tool called Tony. Tony is designed for the interactive
annotation of melodies from monophonic audio recordings. The information on each segmentation in
the flute music pieces includes the time of onset, time of offset, duration of the note (or ornament),
type of segment, note identity (if applicable), and note frequency (if applicable). The type of segment
consists of note, one of the kinds of single-note or multi-note ornaments, and breath.

2.3 Onset Detection

There is a wide range of methods for onset detection in musical signal analysis. Traditional methods
focused on the variations in the energy of the signal and analyzed them in the temporal or spectral
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domain. J. P. Bello, G. Monti, et al.[1] used fundamental frequency (F0) for onset detection, but
in their work, the F0 estimation method still suffers from octave errors. A. Klapuri[13] utilized
multiple-F0 estimation to build an automatic music transcription system to extract pitches, onset
times, etc. His algorithm is effective in rich polyphonies. For example, the proposed system achieved
an error rate below 10% in six-note polyphonies. There is also another method for monophonic F0
estimation called YIN algorithm. It analyses only a single proficient frequency. In A.Klapuri’s work,
the YIN algorithm achieved 4.1% error rate for isolated notes.

Recently, some machine learning-based algorithms are applied to build an automatic musical tran-
scription system. B. Fuentes, R. Badeau, and G. Richard [7] proposed a Harmonic Adaptive Latent
Component (HALC) model based on Probabilistic Latent Component Analysis (PLCA), making
it suitable for notes having variations in both pitches and spectral envelopes. G. E. Poliner and
D.Ellis[8]designed the detection system using a support vector machine trained on spectral features,
which detects frame-level instances. The output of this system is then smoothed by note-level HMM
to perform the transcription. Their system achieved an accuracy of 62.3% for note onset transcription
with a tolerance of 100 milliseconds. The recordings used are all played by the piano.

Jan. S and Sebastian. B [19] utilized Convolutional Neural Networks (CNN) to detect onset. They
regarded this problem as detecting edges on the spectrogram. The dataset is 102 minutes in length
and comprises 25927 notes. It achieved an F-score of 90.3%, about three percent above the previous
RNN-based model. Our project is inspired by their work, and we will create our own CNN-based
model detecting both notes and ornaments in Irish traditional music.

S.Sigtia and E.Benetos[20] employed the architecture which provides a principle way of superposing
an RNN to the predictions of an random frame-level classifier and combines two models under a
common training objective. It is superior to use RNNs for high-dimensional problems like AMT
since the outputs of the RNN form a distributed representation, which makes the parameter estimation
problem more tractable compared to an HMM.

As ornaments are short in duration, making them hard to detect and annotate, there is only a little work
related to ornaments detection. Boenn, et al.[2]focused on the automatic quantization and rhythmic
transcription of syncopated rhythms and baroque ornaments. comprise any machine learning-based
techniques. In their work, there are 65% of ornaments were transcribed based on prior knowledge of
downbeat locations, and 95% of ornaments were transcribed based on prior knowledge of single-beat
locations. The work done by M. Gainza, E. Coyle, et al.[8] is the only research about ornaments
detection in the Irish flute. However, the data set used in their work is on a relatively small scale. They
built their onset detection system based on comb filters (ODCF). The database of flute signals consists
of 290 notes. 36 notes are single-ornamented and the extra 5 multi-note ornaments are included. For
single-note ornaments, the accuracy is 58.33%, while the accuracy for detecting multi-note ornaments
is 80%.

2.4 Transfer Learning

In general, machine learning and deep learning are based on the assumption that training data are
drawn from the same distribution as the testing data. However, this may not always be true in practical
datasets. Also, a common difficulty is that some types of data are hard and expensive to collect.
Hence, developing a training mode that can utilize the learning experience on more easily obtained
data is in demand, which promotes the emergence of transfer learning [22].

3 Data

The pretraining progress is performed on MusicNet, a large public musical dataset containing 330
freely-licensed classical music recordings [21]. Mel-frequency cepstral coefficients (MFCCs) are
coefficients that collectively compose a Mel-frequency cepstrum (MFC). MFCCs are commonly used
to characterize speakers. The number of MFCCs is set as 20. It is necessary to match each frame with
each onset accurately. For instance, as the onset information is recorded every 0.01 second, if the
length of each frame of audio is set as 160, then the frame contains the information lasting for 0.01
second. We computed the single magnitude spectrograms with a hop size of 10 ms and window size
of 20 ms, 30 ms, and 40 ms. Also, we extracted mfcc-delta features and mfcc-delta-delta features
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with a hop size of 10 ms and a window size of 10 ms.

period_contained_in_the_frame =
1

sampling_rate
× frame_length (1)

After converting to spectral features and stacking the spectrograms generated with different window
sizes but the same hop length, and different delta features but the same window and hop length,
the data is in the format channel × frames × band. The number of samples and positive labels
(positive if the given note is onset) in the training, validation, and testing set are shown in the table
below:

Table 1: The number of samples and positive labels in training, validation and testing set

Set # of samples # of positive labels

Train 126,430 19,845
Validation 17,865 2,592

Test 17,977 2,500

3.1 Labels

Annotations include onset, offset, duration of the segment, type of segment, note identity, and note
frequency. The manual annotations are exemplified in table2.

Table 2: An example of manual annotation from the first of the May’s Fishers performed by H.Bradley

Onset(s) Offset(s) Duration(s) Type of Segment Note Identity Note Frequency

0.0348 0.13932 0.10449 NOTE A4 463.523
0.13932 0.39474 0.25542 NOTE C5 518.509
0.39474 0.44989 0.055147 shRoll_ct D5 610.991
0.44989 0.51664 0.066757 shRoll_nt C5 518.658
0.51664 0.55293 0.036281 shRoll_str B4 504.825
0.55293 0.66177 0.10884 shRoll_nt C5 519.887
0.66177 0.82141 0.15964 NOTE D5 576.006
0.82141 0.93751 0.1161 lngRoll_nt A4 463.358
0.93751 1.0144 0.076916 lngRoll_ct C5 515.857
1.0144 1.0725 0.05805 lngRoll_nt A4 462.43
1.0725 1.1059 0.033379 lngRoll_str A4 443.255
1.1059 1.2118 0.10594 lngRoll_nt A4 463.699
1.2118 1.2785 0.066757 ct C5 523.07
1.2785 1.354 0.075465 NOTE C5 510.808
1.354 1.4832 0.12916 NOTE A4 462.412
1.4832 1.6298 0.14658 NOTE D5 585.44
1.6298 1.7241 0.094331 NOTE E5 696.36
1.7241 1.8489 0.12481 NOTE A5 923.938
1.8489 2.0143 0.16544 br BREATH 0

3.1.1 Onsets

In Table2, it is noticed that the units of our onset are 0.1ms and all the onsets are truncated to 2
decimal places, representing 10ms. For all the MFCC frames we extracted from audio files if the
window length is 160 and hop length is 160, each frame contains the spectral information for one
consecutive 0.01 second. If this frame is marked as an onset, the label of this frame is 1. Otherwise,
its label is zero. As the amount of positive labels is small, we add fussy labels when we encode the
onsets. If the current frame is annotated as an onset, the next frame after the current frame is also
annotated as an onset.
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3.2 Type of segments

The type of segments is categorized into notes, ornaments, and others. In ornaments, there are
cut, strike, crann, roll, and shake. In others, there are breath and triplet. "Notes" is labeled as 1,
"Ornaments" is labeled as 2, and "Others" is labeled as zero. The number of samples and each
category is summarized in Table3.

Table 3: The number of samples and each category in training, validation, and testing set

Set # of samples # of notes # of ornaments # of others

Train 126,430 93,869 15,067 17,494
Validation 13,412 2,592 1,999 2,454

Test 17,977 13,078 2,074 2,825

4 Experiments

4.1 Signal energy: spectral domain

The signal energy-based method (spectral-flux) analyzes the signal in the spectral domain and
measures how fast the power spectrum is changing. The variations of signal energy are calculated
by comparing the power spectrum for one frame against the power spectrum from the previous
spectrum.[9] We summarized the pseudocode for the detailed spectral-flux algorithm in Figure1.

Algorithm 1 Spectral-flux algorithm for onset detection
1: for overlapped signal_frame in signal do
2: signal_frame = hamming_window(signal_frame)
3: signal_frame = zero_padded(signal_frame)
4: frequency_bin = STFT (signal_frame)
5: end for
6: for each frequency_bin do
7: magnitude_difference = frequency_bin(i)− frequency_bin(i+ 1)
8: magnitude_difference = half_waved(frequency_bin)
9: detection_value = L2_Norm(magnitude_difference)

10: if detection_value > threshold and not two consecutive peaks are found within a given
time instance then

11: The frame is regarded as onset.
12: end if
13: end for

4.2 Convolutional Neural Networks

We borrowed the architecture and training details from work by Jan. S and Sebastian. B [19] to
construct our baseline framework shown in 1. As reported by this baseline paper, they achieve
around 90 percent accuracy utilizing the CNN model to detect onset notes, which outperforms our
conventional methods. Therefore, it is worthy to implement such CNNs and evaluate their capability
on our datasets. The input to this network is a 3-channel spectrogram, where each channel includes
21 frames by 20 bands. In the first convolutional layer, 10 rectangle filters of size 5× 3 are adopted.
The next max-pooling layer downsamples each frame by selecting the maximum number of values of
3 adjacent bands without overlap, which reduces the map size to 6 bands. This pooling layer is then
followed by another convolutional layer of 3× 3 filters and a 2-band max-pooling layer. To prevent
information loss, we increased the number of filters to 20. Eventually, this results in 20 feature maps
which are all of the sizes 15 × 2. Before feeding into the fully-connected layer, all the activation
values in these feature maps are flattened. After processing by a fully-connected layer of 256 units,
the final fully-connect layer gives a binary output, indicating if the input notes are onset or not.

Following,. the baseline paper, we train this network for 100 epochs using a fixed learning rate of
0.05. The optimization in each epoch is performed by SGD with a momentum of 0.9. The batch size
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…
……

…

3 input channels

(21 x 20)

…

10 feature maps
(17 x 18)

Convolve (5 x 3)

…

10 feature maps
(17 x 6)

Maxpool (1 x 3)

…

20 feature maps
(15 x 4)

Convolve (3 x 3)

…

20 feature maps
(15 x 2)

Convolve (1 x 2)

256 Sigmoid units

Fully connected

2 output units

Fully connected

Figure 1: Baseline CNN architecture used in our work. This network includes convolution and max-
pooling operations. All activation values in the last-level feature maps are input into a fully-connected
layer. To predict onset notes, the final output is binary.

is set to 256 and the backpropagation is based on cross-entropy loss. The final weights are selected
associated with the best validation accuracy. As not clearly stated in the baseline paper, we follow the
Youden index [23] to select the threshold for label prediction.

4.3 Grid Search

In order to evaluate different training settings, we applied grid search on several significant hyper-
parameters and thus, find the optimal combinations. The hyper-parameters we have explored are
dropout rates, context values, learning rates, and learning schedulers.

4.4 Transfer Learning

To overcome the pitfalls on small training datasets, we adopt the transfer learning technique, which is
inspired by human learning. Human is able to transfer knowledge between different tasks inherently.
Similarly, it is expected that the model would better perform onsets detection on Irish flute music
after learning multiple types of musical information. In our experiments, we trained the model on
MusicNet using the optimal combination of the hyper-parameters we found during baseline model
training.

4.5 Window features vs. Delta features

Window feature is constructed by the Mel-frequency cepstral coefficients (MFCCs) extracted from
each frame. We concatenated the extracted MFCCs for all frames. As long as the hop length
remains constant, when we extend the window length (which means more frames are involved when
calculating MFCCs), the output MFCCs has the same length. We stacked three MFCC features with
the fixed hop length and various window lengths as a 3-channel feature. Delta feature is constructed
by MFCC features, MFCC delta features, and MFCC delta-delta features. MFCC delta feature and
MFCC delta-delta are built by the local estimate of the derivative and the second derivative of the
input MFCC data along the selected axis. Again, We stacked MFCC, MFCC-delta, and MFCC
delta-delta features with fixed hop length and fixed window length as a 3-channel feature.

To further search for another type of feature that may better represent onsets, we also built models
based on delta features and compared the outcomes with that based on window features.

4.6 Type of segments

To further evaluate if our baseline model is able to perform more complicated tasks, we designed
multilabel tasks based on different types of segments.

4.7 Metrics

Similarly, we adopted precision, recall, and F-score, as described in the baseline paper
citeschluter2014improved as well as accuracy. In our cases, onset notes are assigned to a posi-
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tive (1) label, and the calculations of these 4 metrics are shown below:

TP = P (pred = Onset|label = Onset) (2)

TN = P (pred = Not onset|label = Not onset) (3)
FP = P (pred = Onset|label = Not onset) (4)
FN = P (pred = Not onset|label = Onset) (5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score = 2× Precision ∗Recall

Precision+Recall
(9)

Apart from these 4 metrics, we also calculate the AUROC value, which is the area under the ROC
curve. AUROC can reflect the model’s ability to discriminate different classes and is widely used in
model evaluation.

In the task of predicting the type of segments, as it is a multi-class classification task, we calculated
metrics for each label, and find their average weighted by support (the number of true instances for
each label).

5 Results

5.1 Signal energy: spectral domain

Table 4: Result comparison between spectral-flux and CNN baseline model

Model Accuracy Precision Recall F1-score AUROC

Spectral-Flux 0.730 0.170 0.130 0.150 0.500
CNN baseline 0.748 0.328 0.776 0.464 0.832

From Table 4, it is observed that even though the spectral-flux method reaches comparable accuracy,
whether the such method is able to classify onsets given mfcc features still requires further validation
as the AUROC is around 0.5. Additionally, the CNN-based model seems to be more reliable
considering the improvement of not only accuracy but also other evaluation metrics. The AUROC
value over 0.8 can also demonstrate the generalization and capability of the CNN model to classify
onsets.

5.2 Transfer learning

Table 5: Result comparison between baseline model and pre-trained model

Model Accuracy Precision Recall F1-score AUROC

CNN baseline 0.748 0.328 0.776 0.464 0.832
CNN (pretrained on MusicNet) 0.711 0.307 0.855 0.451 0.838

According to Table 5, there is a slight boost in AUROC after pretraining on the MusicNet. Moreover,
the higher recall indicates the better ability of such a model on predicting onsets. Although there the
model suffers a drop in accuracy, it could be claimed that the model generalization has been improved
due to higher AUROC. From another perspective, one of the possible reasons that the model does
not boost obviously is that MusicNet contained a different type of musical data which may lead to
different representations in the same feature space.
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Table 6: Result comparison between window features and delta features

Model Accuracy Precision Recall F1-score AUROC

CNN (pretrained & Window features) 0.711 0.307 0.855 0.451 0.838
CNN (pretrained & Delta features) 0.671 0.270 0.803 0.405 0.786

5.3 Delta feature

From Table 6, it could be seen that the model trained on delta features under-performs that trained on
window features. This may be due to that the extracted window features are more distinguishable
between onsets and non-onsets while the extracted delta features are relatively more similar.

5.4 Prediction of type of segments

Table 7: Note identity prediction results based on the model with the best parameter set

Model Accuracy Precision Recall F1-score

Baseline Model(Window features) 0.72 0.70 0.72 0.70

Based on Table 7, it could be observed that our baseline model is able to perform more complicated
tasks apart from simple binary prediction.

6 Future work

As the project is focused on a niche subcategory of music, the main difficulty was finding enough
resources and data to support the development of better models. For example, the original dataset for
Irish flute music contained a total of 162,272 samples which is minuscule compared to other popular
datasets such as images or text which have practically an unlimited amount of well-prepared data to
use. Further work could be done to put more emphasis on this area of research and develop more
accessible datasets for researchers to work with. As mentioned in this report, the lack of data and
overfitting is tackled by extending to additional goals as well as implementing transfer learning models
that are able to take advantage of larger music datasets that contain other instruments. Although an
improvement was obtained, future work could be exploring alternative learning frameworks that have
similar properties such as few-shot learning. Alternatively, overfitting can be mediated by reducing
model complexity. Although out of scope for this course, traditional machine learning methods such
as decision trees, SVMs, logistic regression, etc. may produce better results and are worth putting
effort into.

7 Conclusion

To summarize, the project has been successful on three fronts, altering the baseline model to fit Irish
flute music data, extending the model to predict additional musical properties, and improving the
baseline model by implementing a transfer learning framework. To the best of our knowledge, this
project is the first to use deep-learning neural networks to predict aspects of Irish flute music. Since
there is a scarce amount of resources in this field, the majority of this project was focused on selecting
the right model and altering it to fit our needs. However, we have made progress in producing good
results for the onset detection baseline model and improving it further by incorporating transfer
learning into our model. Extensive experimentation was also conducted on feature selections and
the results suggest that using delta features perform worse than window features due to the level of
similarity between the extracted features. Additionally, an effort was made in extending the CNN
model to predict the type of musical segment feature of the dataset and achieved similar levels of
testing metrics as the onset detection model. This suggests that the model can be generalized and
extended to classify multiple features of Irish flute music. Lastly, We hope this project will help
promote further research combining deep learning techniques and the music field, which is significant
to preserve musical heritage.
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A Github Codebase

https://github.com/Brauntt/Automatic-Transcription-of-Ornamented-Irish-Flute-Music

B Grid Search - Baseline model

Table 8: Grid search on different dropout rate (baseline model)

Model Accuracy Precision Recall F1-score AUROC

Our baseline (no dropout) 0.742 0.323 0.777 0.456 0.825
Model with dropout=0.1 0.745 0.325 0.773 0.458 0.818
Model with dropout=0.2 0.716 0.305 0.814 0.444 0.825
Model with dropout=0.3 0.714 0.303 0.811 0.441 0.824
Model with dropout=0.5 0.696 0.293 0.836 0.433 0.823

Table 9: Grid search on different context values (baseline model)

Model Accuracy Precision Recall F1-score AUROC

Our baseline (context=10) 0.742 0.323 0.777 0.456 0.825
Model with context=5 0.714 0.297 0.772 0.429 0.801
Model with context=15 0.748 0.328 0.776 0.464 0.832
Model with context=20 0.704 0.298 0.834 0.439 0.825
Model with context=32 0.715 0.306 0.832 0.448 0.831

Table 10: Grid search on different initial learning rates (baseline model)

Model Accuracy Precision Recall F1-score AUROC

Our baseline (LR=0.05, context=15) 0.748 0.328 0.776 0.464 0.832
Model with LR=0.1 0.720 0.302 0.772 0.434 0.808

Model with LR=0.01 0.699 0.291 0.812 0.429 0.811
Model with LR=0.005 0.710 0.301 0.817 0.440 0.821
Model with LR=0.001 0.709 0.301 0.827 0.442 0.826

Table 11: Grid search on different learning rate schedulers (baseline model)

Model Accuracy Precision Recall F1-score AUROC

Our baseline (Constant LR) 0.748 0.328 0.776 0.464 0.832
Model with Cosine Annealing 0.715 0.303 0.809 0.441 0.824
Model with Exponential LR 0.734 0.319 0.800 0.456 0.831

Model with ReduceLROnPlateau 0.715 0.308 0.839 0.450 0.833

C Grid search - Transfer learning

Table 12: Grid search on different dropout rate (transfer learning)

Model Accuracy Precision Recall F1-score AUROC

Baseline (no dropout) 0.742 0.323 0.777 0.456 0.825
Model pretrained (no dropout) 0.703 0.300 0.853 0.444 0.833

Model pretrained (dropout=0.2) 0.700 0.301 0.874 0.448 0.834
Model pretrained (dropout=0.3) 0.711 0.307 0.855 0.451 0.838
Model pretrained (dropout=0.5) 0.706 0.305 0.70 0.452 0.838
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Table 13: Grid search on different initial learning rates (transfer learning)

Model Accuracy Precision Recall F1-score AUROC

Baseline (Dropout=0.3 & LR=0.05) 0.711 0.307 0.855 0.451 0.838
Model pretrained (LR=0.1) 0.715 0.307 0.832 0.448 0.832

Model pretrained (LR=0.01) 0.728 0.317 0.828 0.458 0.836
Model pretrained (LR=0.005) 0.719 0.310 0.836 0.453 0.834
Model pretrained (LR=0.001) 0.714 0.307 0.840 0.450 0.832

D Grid search - Delta features

Table 14: Grid search on different dropout rate (delta features)

Model Accuracy Precision Recall F1-score AUROC

Baseline (no dropout) 0.671 0.270 0.803 0.405 0.786
Model pretrained (no dropout) 0.668 0.247 0.676 0.361 0.713

Model pretrained (dropout=0.2) 0.675 0.246 0.647 0.357 0.713
Model pretrained (dropout=0.3) 0.678 0.257 0.694 0.375 0.739
Model pretrained (dropout=0.5) 0.621 0.230 0.737 0.351 0.727

Table 15: Grid search on different initial learning rates (delta features)

Model Accuracy Precision Recall F1-score AUROC

Baseline (Dropout=0.3 & LR=0.05) 0.678 0.257 0.694 0.375 0.739
Model pretrained (LR=0.1) 0.673 0.253 0.690 0.370 0.733

Model pretrained (LR=0.01) 0.590 0.203 0.667 0.312 0.664
Model pretrained (LR=0.005) 0.623 0.225 0.700 0.341 0.702
Model pretrained (LR=0.001) 0.614 0.219 0.689 0.332 0.685
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